우리가 고등학교때 배운 등차수열이나 등비수열은 다 잊어도
한번쯤은 이야기로 들은 피보나치수열은 기억하는 사람은... 몇... 있을 것입니다.


----------------- 피보나치 수열의 정의 ------------------


최초의 발견은 린드란 사람이 발견한 수학서 "아메스 파피루스(혹은 린드 파피루스)"에 적힌 문제나
기원전 5세기 제작된 인도의 수학자 핑갈라가 쓴 수학책 찬다 사트라에 언급된
수열을 최초로 재설명 했다는 설이 있습니다.

여튼 피보나치는 1228년에 쓴 <산반서>란 책 2장 10설에서
토끼 이야기를 하면서 피보나치 수열의 정의를 언급하였고 그 이야기는 이렇습니다.

암 , 수 한쌍의 토끼를 기르는데 한달에 한 번씩 한쌍의 새끼(암,수)를 낳는 다고 한다.
새로 낳은 새끼 한 쌍은 한달이면 다 자라고 두 달 후부터는 매 달 한 쌍의 새끼를 낳는다면
일 년 후에는 모두 몇쌍의 토끼를 낳을 까?


뭐 문제는 간단합니다. (풀이야 그렇지 않더라도)
찬찬히 하나하나 적어보겠습니다.





(1번째 달) = 1쌍
(2번째 달) = 1쌍
(3번째 달) = 2쌍
(4번째 달) = 3쌍
(5번째 달) = 5쌍

잘 보고 있으면 일정한 규칙을 찾을 수 있은데

예를 들어 보면
(3번째 달) = (1번째 달) + (2번째 달)
(4번째 달) = (2번째 달) + (3번째 달)
(5번째 달) = (3번째 달) + (4번째 달)

간단히 이야기 하자면 그 규칙은
어떤 달이 있다면 그 달의 수는
그 전달과 그 전전 달의 합과 같아집니다.

즉 간편하게 쓰자면

가 되죠.


피보나치는 이 수열을 단순히 문제에 대해서 책에 기록한 것이다
이 문제에 대한 해답은 19C 프랑스 수학자 에드워드 루카스가 오락용 책을 편집하다가
이 수열의 해답을 적고 이 수열 앞에 피보나치란 이름을 붙인 것이다.


--------------------피보나치의 수열------------------------


이같은 방법으로 계속 수를 써 내려가면 이렇습니다.

1  1  2  3  5  8  13   21   34   55   89   144   233 .........


그저 규칙이 없는 수의 배열 같지만

놀라운 수열입니다.


1. 자연이 선택한 수열
우리 인간에게 가장 큰 영감이고 가장 큰 철학의 근원은 바로 자연입니다.

그런 자연이 선택한 수열이 바로  피보나치 수열입니다.

먼저 많은 식물이 피보나치를 선택했습니다.
주변의 꽃잎을 보면 대부분의 꽃잎의 수는 3장 5장 13장등 피보나치의 수입니다.


백합(3장의 꽃받임 제외)과 붓꽃과 아이리스는 3장
패랭이, 채송화와 동백과 장미는 5장
모란, 코스모스는 8장의 꽃잎을.
금잔화와 금불초는 13장,
치커리와 애스터는 21장,
질경이와 데이지는 34장,
쑥부쟁이는 55장 혹은 89장의
꽃잎을 갖고 있습니다.
뿐만아니라 데이지와 해바라기의 씨를 보면
해바라기는 34-55-89등의 배열이며 데이지의 꽃 머리 역시 34개와 55개의 내선이 있습니다.
그리고 신기한 것이 있습니다.


그건 바로 인공적으로 개량한 종은 거의 이 법칙을 따르지 않습니다.
자연은 쉽사리 법칙에 대한 접근을 시도치 않는가 봅니다!





끝이 아닙니다. 잎차례라고 있습니다.
잎차례라는 것은 t번 회전하는 동안에 잎이 n개 나오는 것을 이야기 하는데
보통 잎차례는 t/n으로 표시 합니다.




그런데 이것은 따져보면 분자와 분모다 피보나치 수열로 나오게 되는 경우가 많습니다.
(이것을 심퍼-브라운의 법칙이라고 한다.)
예를 들면
무꽃, 벗꽃, 사과 => 2/5
장미, 배, 버드나무 = > 3/8
아몬드 => 5/13
등이 있습니다.


아마도 그 이유는 윗 잎에 햇볕이 가려지는 것을 피하기 위해

빈공간을 찾게 되고 따라서 자연스럽게
잎들이 피보나치 수열을 선택한 것으로 보고 있습니다.

그리고 나무도 마찬가지 입니다.

같은 이유인지
나무의 가치가 뻗어나가는 것 또한 피보나치 수열을 이룬다.




동물에서도 어렵지 않게 찾을 수 있습니다.
예를 들면 고동의 모양을 보면 그 또한 피보나치 수열로 만들어 진것을 알 수 있습니다.




위의 두 나선을 보면 고동이나 소라가 어떤 수열을 공부했는지 알 수 있습니다.
자연을 표현한 자연은 닮은 수열,..

바로 피보나치 수열입니다.



2. 그 자체가 아름다운 그 수열 피보나치


피보나치 수열은 그  자체로도 빛을 발합니다.


먼저
1 1 2 3 5 8 13....으로 이어지는 피보나치 수열에
앞과 뒤의 비를 보면
다시 말해
1/1,  1/2,  2/3,  5/8, 8/13........
이렇게 앞을 뒤로 나누어 보는 것입니다.

그럼 이 값이 어떤 값으로 천천히 가까워 지는데

그것은 우리가 알고 있는


그리고 그 유명한


"황금비"입니다.

황금비는 우리가 사용하는 신용 카드, A4용지, 계란의 가로와 세로의 비 등!

엄청나게 다양하게 사용되는 비율이 바로 황금비입니다.
우리는 우리도 모르게 가장 많이 쓰고 있는 비율인 것이다.


이름 자체에서 느끼듯이
우리가 느끼는 가장 아름다운 비라고 느낀다고 이야기 합니다.
즉 피보나치 수열은 그 자체에 황금비의 아룸다움을 품고 있는 것이죠.


또한 재미있는 실험을 해보면


1을 연속으로 연분수(분수속에 분수)꼴로 재미있게 만들어 보면
지금 까지 계속 이야기 했던 이야기 바로 피보나치의 수와
방금 이야기 했던 황금비율로 가는 분수들이 나오게 됩니다.

피보나치의 수 자체에 이런 재미있는 모양을 담은 유희의 수열이라 할 수 있죠.


---------------------------------------------------------------------------------------

사실 간단한 사고로 부터 혹은 장난스런 문제로 시작한 이 수열은
지금까지도 꾸준히 연구 되고 있는 수열로
어쩜 자연이 선택하였고 인간을 아름답게할 신이 선택한 수인 것입니다.

가장 심오한 아름다움은 가장 단순한 법칙으로 부터..

피보나치의 수열 하나의 담긴 아름다움을 끝으로 마치겠습니다.



우리가 집합을 종종 펼쳐보다보면 조금 답답한 면이 있습니다.
집합의 정의 자체 부터.. 비유하자면 약간 파시즘적이죠.
소속을 명확하고 정확하게 해야지만 그 소속에 들어갈 수 있죠.

다시 말하자면 "너무 엄격함"입니다..


----------------------불완전한 소속-----------------------------

다시 집합이야기로 들어가면
집합에서는 그 집합의 정의에 완벽하게 부합하는 소속원 또는 완벽한 배제만을 원합니다.
그러니 집합은 까다롭기만 합니다.

그런데 이런 것들은 세상의 많은 일을 포용하기에는 반대로 나약합니다.


예를 들어 보자
집합을 "자신이 키가 크다고 생각하는 사람들의 키"라고 하면


이런건 집합에서는 다룰수 없는 것입니다.

결국 버려버리고 마는 집합입니다.
분명한것은 자신이 크다고 생각하는 사람이 분명 존재하고
그런 사람들의 키 또한 분명 존재한다는 것입니다.

또한 다른 예로
"예쁜 꽃들의 모임"이라 생각해보면
대부분의 수학자는 이런 집합에 대답조차 않하겠지만
분명히 이런 꽃들은 누구에게나 존재합니다.

다만 단지 100%동의 하는 것은 존재할 수 없습니다.

누군가에게는 사랑이나 미학의 징표겠지만

누군가에게는 상처나 자본의 징표일 수 있기 때문입니다.


다시 말하면 두 모임은 정확하게는 수학에서 말하는 집합에서 제외됩니다.
수학적 파시즘적에 반하기 때문이다.
하지만 우리가 이런 모임들을 수학적 인식에서 지워야 한다면
너무 삶이 심심하고 수학은 또 그 삶과 너무 떨어져버릴것 같습니다.

이런 실정에서 엄격함의 수학이
실생활에 아니 혹은 인간적임에 손을 내민 이론이 필요하게 됩니다.


---------------------- 완벽하지 않은 집합 ------------------------


말로 하는 것보다
예를 들어보겠습니다.


A = {"자신이 키가 크다 라고 생각하는 사람들의 키"}라는 모임을 만들고
(당연히 수학적인 집합이 아닙니다.)


키가 180cm인 모든 위너를 다 납치해와서 물어봤더니
전체의 90%가 자신의 키가 크다 했다합니다.(쳇..)
또한
170cm인 분들을 모셔와서 자신의 키가 크다고 생각하는지 물어봤더니
그랬더니 전체의 20%가 자신의 키가 큰편이다 라고 했습니다.

이때 이렇게 생각보는 겁니다.
180은 90%가 A란 집합에 들어간다~!
170의 20%가 A란 집합에 들어간다~!
이렇게 집합의 소속을 통계적(혹은 수학적) 확률로 나타내는 것입니다.
근데 %로 쓰는 것은 단위상 문제가 되므로
1을 100%로 계산해서
90%는 0.9로, 20%를 0.2로 환산합니다.

이렇게 정의해 놓고 이제 포함 관계를 이렇게 이야기 합니다.

180이란 원소는 A에 0.9만큼의 원소이고

170이란 원소는 A에 0.2만큼의 원소가 되는 것입니다.


이런 포함관계를 갖는 집합을 퍼지집합이라고 합니다.


사실 퍼지이론을 수학적으로 싫어하는 사람도 많지만
현재 퍼지이론도 수학의 영역으로 보는 사람이 더 많습니다.
(왠지 이것도 퍼지 집합 같네요.)



-------------------------퍼지집합 의미---------------------------


수학에서는 엄격함으로 모든 것을 채워가려는 시도를 했고
그에 따라 어쩜 그 엄격함은 시대의 요구였을 것입니다.
완벽한 판단력으로 어떤 기본적이고 유일한 하나의 정의 혹은 신앙을 향했으며
그들은 수학을 통해서 그들의 삶과 올바른 길을 증명하려 했습니다.

그 속에서 다양함에 대한 이론들이 꿈틀거리고 상대주의의 역활이 커지기 시작했고
그러다 결국 지금은 불완전한 것들로 둘러쌓이게 되었습니다..
결국 지금은 불완전이란 것에 대한 수학이 요구되었고
그 수학중 하나가 바로 이 퍼지 집합으로 볼 수 있습니다.

인간은 기본적으로 불완전합니다.
이 인간의 기본인 불완전함을 이제 수학이 대처하려하는 것으로도 볼 수 있습니다.
모더니즘에서는 인간이 0,1로 제어되는 기계에 맞추어지는 시대라면
포스트모더니즘이라 불리는 지금은 도리어 기계속에 인간의 요소를 삽입하는 것이지요.
교통, 시스템제어, 재고관리. 많은 전자제품등에 이제는 인간의 마음이 개입되어있지 않은 것이 없습니다.
따라서 불완전한 인간을 대표하는 퍼지이론은
완벽한 논리가 필요한 많은 분야에 퍼지고 있는 실정입니다.

그러고 보면
오히려 지금 같이 불확실한 시대에 엄격함은 인식의 도피처일지도 모르겠습니다.



이런 저런 이유로 블로그에 수학에 관련된 글을 올리면서
가장 많이 언급한 수체계 1위는 역시 자연수입니다.

수많은 이름중에 왜 자연수라고 했을지는 어렵지 않게 상상이 됩니다.
사실 영어로 natural number라고 해서 자연수로 번역한것으로 예상됩니다만
영어 'natural'이든 한글(한자) '자연'이든
자연수의 이름에는 "자연스러운"이란 의미가 들어간 것은
<자연스럽게 발생한> 수이기 때문입니다.

다른 수 체계와는 다르게
<자연스럽게 발생한>수는 인위적이 아닌 혹은 교육의 결과가 아닌
경험과 감각으로 발견되었습니다..

우리가 생각하는 대부분의 수이고
수량 순서 크기등 분야를 가리지 않고 모든 곳에 스며들어져 있는 자연수를 분석해보겠습니다.



--------------------------1+1=2?--------------------------------


어쩜 주변 사람들에게
수학을 살짝 전공했었습니다~ 라고 소개를 하면
자주 물었던것 중에 하나가 바로

"1+1은 왜 2인가?"였습니다.
이런 질문은 참 상대방을 당황스럽게 하는데 말이죠



그럼 뭔데라고 물어보면 대답은 다양합니다
1+1 = 창문 이라고 귀엽게 내팽개치는 개그나
1+1 = 1     이라는 감성적인 물방울 철학과
1+1 = 3     이라는 로멘틱한 19금 용어를 던지는 못난 놈 들

어떻게 보면 다 정답니다
바로전 괴델(이분 엄청 언급되네요..)께서는 그러셨으니까..

그래도 우리가 자연수에서 왜! 왜그런지 알아야 하므로
^^

그 답을 드리겠습니다.
일단 자연수가 대체 뭐라 할 것인가 부터 봅시다^^


-------------------------페아노 공리---------------------------


페아노란 분께서 말이죠!
당연하다고 생각되는 것을 다시 정리 해서 공리화 해주셨습니다.
여러개의 공리를 펼쳐주셨는데
그중에서 자연수 부분만 잠깐 설명해 드리겠습니다.(나머지 부분은 심화로 링크하겠습니다)


N이라는 집합이 있습니다.
S(n)은  N위의 함수입니다.



[N1] 1은 N의 원소이다.
[N2] n이 N의 원소라 할때 모든 n에 대하여 S(n) ≠ 1
[N3] S란 함수는 1:1함수 이다
       즉, n,m이 N의 원소라 할때 S(n)=S(m) 이면 n=m이다
[N4] X가 N의 부분집합이라고 하자
       만약 1∈ X 이고
              n∈ X  ⇒ S(n) ∈ X 이면
       X = N이다


------ 1은 자연수이다.

------ S라는 함수를 통해 1이 될 수 없다.

------ 무조건 다른 원소가 나온다.


------ 1부터 연속적으로

          S를 계속 적용하면 자연수가 된다.






 위의 네 조건을 만족하면 N을 자연수라 하고
이때 다음과 같이 정의합니다.
S(1) = 2
S(2) = 3

S(3) = 4
S(4) = 5

       .
       .
       .
       .


-----------------------해석---------------------------------


언제 부터인가 수학이 영어도 아니면서 해석하게 되네요.
잘 이야기 해보면
1은 자연수입니다. (요새는 확장된 자연수로 0으로도 시작하기도 합니다.)


그리고 S(1)이라는 것은 간단히 말하면 "1 다음"이라고 생각보면 좋아요


결론은


1 다음은? 2 라고 쓰자!! 하는 것입니다.



즉,
S(1)=2이란 것입니다.
S(S(1)) = S(2) = 3
1다음에 다음은? = 2의 다음! = 3
다음다음다음을 반복하면서 가는게 바로 자연수 입니다.


-------------------------1+1=2가 맞는가?-----------------------



자연수 덧셈을 이렇게 생각 합니다

n,m이 자연수라고 하면 덧셈은 다음과 같이 정의 합니다!


[A1]  n + 1 = S(n)
[A2]  n + S(m) = S(n+m)

------ 1을 더한 다는 것은 n의 다음수

------ S(m)을 더할 때는 n+m의 다음수



이건 또 머냐!! 버럭 하시겠지만

이제 결론 입니다
1 + 1 = S(1) 입니다(A1에 의해서)


그리고

S(1)은 2라고 했으니  1+1=2인것입니다!!

다른 것도 해볼까요?
3+2 = S(3+1)
      = S(S(3))
그럼 3의 다음 다음이니 5가 됩니다.


---------------------------결론?------------------



뭐 간단한 것을 어렵게 설명하냐 하겠지만
처음 '1+1이 무엇인가?'라는 질문이
사실은 상당히 심오하고 어려운 질문이였습니다.

요약하자면
자연수라는 거.. 자연스럽지만!
쉽게 보아서는 않되는 것이며

아직도 1+1=2인가를 질문한다면.. 저는 위에서 부터 다시..ㅜ_ㅜ
마음속의 1+1이 무엇이든 그것이 정답입니다!

1×1=1도 말씀드릴까요?(자세한 이야기는 생략하고 곱셈의 정의는 링크를 클릭하세요)
나중에 설명하고 그냥 이만 줄이겠습니다.




이제 무한 이야기를 잠시 벗어나서 집합론의 문제들을 더 살펴보겠습니다.

칸토르(칸토어)가 집합론이라는 거대한 작업을 마칠때쯤(어짜피 그 시대에는 큰 인정은 없었지만)
러셀의 편지를 받게 됩니다.
어떤 연구이든 가장 절망스러운 것이 이룩할때 쯔음에 나오는 반론과 역설들입니다.

칸토어 역시 편지 한장에 절망감을 느끼게 됩니다.


그 내용은



  [모든 집합들의 집합]은 존재하는가?



사람들은 집합이란 단어를 '모임'으로 생각하기 때문에
"모든 집합들을 모아 놓은 집합"도 자연스레 상상하게 됩니다.
자연스러운 이 단어가  왜 문제가 되는 것일까요.


그 문제는

다음 이야기에서 나타납니다.


-------------------------이발사의 역리(러셀의 역리)------------------------


세빌리아(지명이름)의 이발사는 자신의 상점 입구에 이렇게 크게 써 놓았습니다.



 "나는 세빌리아 모든 사람들 중에서 스스로 면도하지 않는 사람들만을 면도해한다."


멋진 한마디입니다.

즉, 나는 스스로 면도하지 않는 사람을 면도하겠다는 설명입니다.


그런데 문제는 세빌리아의 다른 사람들이 아닌 자기 자신입니다.

이발사 스스로의  면도는 누가 해야 할까요?


먼저 자기 자신이 면도를 한다면 스스로 면도하는 사람이므로

팻말에 적혀있는 스스로 면도하지 않는 사람에 포함될 수 없습니다.

그러므로 이발사는 자신을 면도할 수 없습니다.




또한 다른 사람이 자신을 면도 한다면 이발사 자신은
팻말에 적혀있는 스스로 면도하지 않는 사람입니다.
따라서 스스로 면도를 해야 합니다.


----------------------------------------------------------------------------------------


말의 의도는
세릴리아의 스스로 면도하지 않는 사람을 면도 하는 사람
이란 자신의 처지가 자신에게 속하는가 속하지 않는가 입니다.
자신자체가 들어가야 할 곳이 어디인가라는 것입니다.

러셀은 이런 역리를 구체화한 집합과 질문을 던진다



"과연 자기자신을 <포함하지 않는 집합의 집합>이 가능한가?"

그럼 이 집합은 자신에게 속하는 것일까? 아니게 될까?


이 집합에는 자기 자신이 포함될수도 포함되지 않을 수도 없는 일이 벌어집니다.


전형적인 모순입니다.



"더 멀리나가면 <모든 집합의 집합>이 있을 수 있을까요?"



이발사의 역리로 시작한 이 질문은 집합론계의 아주 큰 파장을 불러일으켰습니다.
참고로 이와 같은 의미의 유명한 역설인 에우블리데스의 명제"내가 지금 말하는 명제는 거짓이다"
그리고 크레타섬의 거짓말쟁이의 역설"이섬의 사람들은 다 거짓말 쟁이다"와 일치합니다.

당시 집합론을 이야기 하는 수학자의 기본적인 믿음에 대못을 박은 이 논쟁은
결국에는 <모든 집합의 집합>이 존재하지 않음으로 결론을 냅니다.
그리고 이 논쟁을 통해서 소위 논리주의, 직관주의, 형식주의의 이 세가지의 사조가 나타나면서

급 혼란기를 맞이합니다.(자세한 것은 심화 메뉴를 통해서 알아보도록 하겠습니다.)



------------------------- 결  언 ------------------------------


우리가 어떤 것을 감각적으로 이해하고 의견을 수렴하는 일은
자신도 모르는 기초 사고에 지배당하게 됩니다.

집합론도 마찬가지입니다.
우리가 쉽게 이해할 수 있는 집합론이지만
웃으며 지나가기에는 많은 역설과 모순이 난무하게 됩니다.

<러셀의 역리>라는 홍역을 치룬 집합론은
제대로된 공리계를 세워 집합론을 방어해 나가야 할 필요성이 생겼고
대학수준의 이야기이지만
현제는 ZFC공리계라고 부르는
체르멜로-프란켈 집합론이라 하여 몇 가지 공리를 기반으로 한 집합론을 세웠습니다.

- 추가 적인 집합론의 역설 -
리차디언의 역설
부랄리-포르티 역설

---------------------------------------------------------------------------------

집합론이란 것으로 무한에 하나의 깃발을 세웠고
또한 집합론을 통해 많은 수학들이 피어나게 되었습니다.

많은 역리와 반발 속에서 꽃피우게된 집합론은
전공수학의 맨 처음을 장식하게되는 영광까지도 얻었죠.

불완전하고 감각적인 수학의 뿌리이지만(괴델의 불완전성의 원리)


집합론은 그 불완전속의 구조적이고 합리적인 사고로 부터 우리는 완벽함을 추구하고자 합니다.

불안함속의 완고한 한마디로 이 장을 마치겠습니다.



"아무것도 모든 것을 포함 하지 못한다."
- paul R. Halmos -



우리는 삶을 살면서 우리도 모르게 진실이라 믿는 사는게 너무 많습니다.

기독교에게 여호와, 불교자에게 석가모니..
또는 누구에게는 로봇물고기

대부분 그렇지만 그 믿음을

한번 증명해 보라고 하면 믿음 자체가 중요하다고 말합니다.
보통 신성모독으로 종교재판에
혹은 국보법위반으로 안보부에 끌려갈지 모르는 일이죠.

여튼 어쩔수 없이

믿음에 대한 증명은 항상 어느 벽에 부딛치고 맙니다.
기억해보면.
교사인 저도, 조카를 둔 삼촌들도 가장 무섭고도 어려운 질문이

"왜?" 입니다.


---------------------불완전함을 찾는 일--------------------


한 주제에 대해서 딱 10번만 왜?라는 질문을 받아보면
어느 순간 오른쪽 어깨 2두와 3두 근육의 수축을 느끼게되죠.
하여튼 질문을 받다보면 결국엔
"그것은 그냥 믿으면 되는 거야"
라고 대충 이렇게 얼버부리고는 맙니다.


축구를 예를 들어보면
"왜 골을 많이 넣으면 이기는 것입니까?"

"야구는 왜에 2루를 밟기 전에 1루를 밟아야 합니까?"

라고 물으면,

이런것들은 참인지 거짓인지 증명 못할 뿐만 아니라
자꾸 물어보면 화까지 유발합니다.


----------------------  공   리  --------------------------


수학도 마찬가지입니다.
예를 들어 덧셈과 곱셈으로 자연수의 체계를 가지고 완벽한 체계를 만들어도
결국 증명 못하는 것이 나오게 마련입니다.
예를 들어 "왜 1+1이 양수일까요?"(페아노 공리-클릭)
라고 물어본다면 참으로 난감합니다.

하지만 물어본 사람이 충분히 난감할 만큰 이야기할 수는 있겠죠.


이런 질문을 위한 수학의 마지막 보루가 있습니다.
그것은 바로 "공리"라고 합니다.



 공리란 체계안에서 증명없이 참이라고 인정하고 시작하는 것입니다.



양수 더하기 양수는 왜 양수인가요?란 질문은,
"자연수의 페아노 공리에서 우리는 참으로 인정하기로 했습니다"
라고 하며 더이상 더 깊게 들어가는 길을 막는 것입니다.

뭐 그렇다고 아무거나 공리로 붙이면 좋지않습니다.
공리가 생길수록 공리끼리의 무모순을 보여야 하며
결정적으로 너무 공리가 많으면 예쁘지(?)않습니다.

-------------------------- 불완전한 수학? --------------------------


이런 이유에서 수학에서 불완전성이 생기게됩니다.
어떤 체계든 공리로 시작하기 때문에 그 공리가 참인지 거짓인지 구별할 수 없는 것입니다.

(사실 그게 증명가능한 명제라면 이미 공리라는 지위는 잃게 됩니다.)


여튼 공리가 없는 수 체계가 있을 까요?

결론 적으로 그럴 수 없습니다.



사실 당연한 이치입니다.

이에 관련된 정확한 이야기는
위대한 철학자이며 수학자인 괴델이 답을 하겠습니다.



괴델의 불완전성의 원리(정리)!

제 1정리 : 산술적으로 참인 명제를 증명 할 수 있는 임의의 무모순인 계산가능한 가산 이론에 대해,
               참이지만 명제들 중에는 증명할 수 없는 산술적 명제를 구성할 수 있다.
               다시 말하면, 산술적 이론은 무모순인 동시에 완전할 수 없다.

제 2정리 : 공리로부터 출발한 산술체계가 무모순인지의 여부 자체가 참 또는 거짓인지 결정할 수 없다.



그냥 읽어보면 참 어렵게 써놓았지만 풀어서 설명하면 크게 어려운 말이 아닙니다.

불완전성의 원리란 체계가 가장 깔끔하고 완벽한

즉, 무모순(모순과 무모순에 대한 설명 클릭)으로 어떤 산술체계를 만든다고 해도
결국엔 최소 하나인 참인지 거짓인지 증명 못할 명제가 나옵니다.


따라서 어떤 수학체계도

"100% 완벽하다."라고 하기 위해서는

1%라도 설명하지 못하는 것이 존재합니다.


다시 말하면, 100% 완벽한 수학적 진리란 이제 없는 것이다.
그저 참인지 거짓인지 모르지만 그렇게 믿는 것입니다.


---------------------------------------------------------------


그냥 그렇구나.. 할 수는 있겠지만

단순한 결과가 아닙니다.


결국엔 우리는 어떤 것이 절대적 가치라고 믿어도

다시 말하자면 절대적인 참과 거짓을 구별하는 일은 개인적으로 가능할지 몰라도

그것은 증명하는 것은 불가능합니다.


우리 시대의 매체들이 매일 입에 달고 사는
"포스트 모더니즘"의 수학적 원리가  여기서 나온다고해도 과언이 아닙니다.
사실 진리의 상대성은 그리스의 소피스트에서 부터 이어져왔다고 할 수 있지만

진리의 절대성을 지지하던 수학이 갑자기 상대성을 바라보게 된 것입니다.


결론적으로 완벽하다고 믿은 모더니즘한 체계가
괴델의 불완전성의 원리에 의해 산산조각 나버립니다.
이미 힐베르트등 많은 수학자 과학자 미학자가 추구했던
"완벽한 진리"란 증명불가능하며

어떤 하나의 체계에 대한 목표는 최소한 한 편의 비약을 포함해야한다는 것입니다.


---------------------- 유클리드 기하학의 패배 --------------------


가장 큰 예로는 바로
"유클리드 기하학의 참패"입니다.


유클리드 기하학은 5개의 공리에서 출발했으며 서로 무모순이였고.
우리는 항상 이 5개는 진리라고 생각하였습니다.
그런데 불완전성의 원리에 따라서
증명도 못하고 반증도 못하는 하나를 살짝 틀어버리면 다른 세계가 펼쳐질 수 있습니다.


사실 유클리드 기하학은 연역을 지지하는 수학적 기반이기 때문에

이 체계가 유일한 세계가 아니라면 절대적인 세계가 아닌 다른 세계가 생성되는 것입니다.


다른 수학자들이 유클리드의 다섯 공리 중에 하나를 바꿉니다.
그것을 바로 평행공리라고 흔히 알고 있는  5번째 공리입니다.



유클리드 기하 5번 평행공리


"한직선과 직선 외의 한 점에 대하 한개의 평행선을 그을 수 있다.."



어찌보면 당연하게 생각할 수 있겠지만
괴델의 불완전성의 원리에 따라서
이 5번 공리는 맞을 수도 있고 아닐 수도 있습니다.

그래서 평행선이 하나도 없는 경우(지표면)와

평행선이 여러개인 경우로 나누워 새로운 세계(우주)를 만듭니다.

나중에 다시 한번 이야기 하겠지만
이 3가지 체계가 전부 맞다고 할 수도 있으며 전부 틀리다고도 할 수 있습니다.
(실제로 3가지 체계가 전부 존재하는 경우가 많죠.)


-----------------------------너 무  길 어 서 요 약----------------------------


누가 물어본다..
지금 쓴 이 글들이 사실입니까??
그럼 괴델이 대답할 것입니다.

서로 무모순인 이야기이지만
참일 지 거짓 일 지에 대한 답은....그럴 수도 있고 아닐 수도 있다

증명 불가이다.


한번쯤 의심해보시기 바랍니다.

당신의 믿음이 맞는지 틀린지
하지만 결국 그답은 똑같습니다.

그럴 수도 있고 아닐 수도 있습니다.




-------------------------모순-----------------------------------------


역설에 대한 것과 다르게 또 모순이란 것이 있습니다.
역설은 어느정도 인문적인 단어라면
모순이라는 것은 좀 더 수학적인 단어 입니다.

그럼 국어적인 모순의 정의는?

모순 ;
두 개의 명사()나 명제간()에서 동일한 요소를 동일한 관점에서 동시에 한편이 긍정하고 다른 한편이 부정할 때 이 양자간의 관계.

자 뭔소린지 모르겠으니 수학적인 되로 간단히 설명하자면
양립할 수 없는 서로 다른 것들 이라 할 수 있다.

잘 모를때는 예를 들어보는게 좋은데..
가장 유명한 이야기가
어떤 군수업체(좀 불려서 이야기하자면 ㅋ)가
창과 방패를 팔며
1. 이 창은 어떤 방패도 뚫어 내며
2. 이 방패는 어떤 창도 막아냅니다~!
라고 했다.
그런데 1번 과 2번은 양립할 수 없는. 다시 말하면 둘 다 성립할 수 없다.
어느 한쪽은 거짓이 될 수 밖에 없고 이런것을 보고 바로 모순이라 한다.

수학적인 곳에서 이런 모순은 아주 값지다!
이것이 바로 귀류법(배리법-자세한 것은 따로 설명할 예정)의 시작이다.
귀류법이란 소크라테스의 문답법에서 가장 많이 쓰이는 증명방법으로

어떤 의견에 대해  일단 인정해주고
계속 적인 논리적 전개를 펼쳐나간다~
계속 되는 대화를 통해 어떤 결론에 도착하게 하는데
그 결론이 결국 처음 의견이나 전체적인 논리에 모순에 되는 경우 나온다.

그 모순을 통해서 처음에 일단인정해주었던 의견이 틀렸음을 인정하게 된다.
모순은 보통 바로 증명하는 직접 증명법이 어려운 경우에 많이 쓰인다
그래서 간접 증명법이라고도 한다.

--------------------------무모순-----------------------------------------

모순에 비해서 무모순은 아주 쉽다.
우선 무모순이 뭔지보면
말 그대로이다~ 모순이 없다(無)이다.
조금 싱겁나?

위의 모순이 되었던 창과 방패를 가져와 보자.
모순을 한번 무모순으로 만들어 보면
1. 이 창은 10번 찌르면 어떤 방패로 뚫을 수 있습니다.
2. 이 방패는 어떤 창의 공격도 5번까지는 막을 수 있습니다.
완벽하게 모순을 피한 것은 아니지만
창으로 6~10사이에 방패가 뚫린다면 지겨웠던 모순의 덫에서 풀려날 수 있다.

사실 위의 사실은 수학적으로는 그다지 의미는 없다.
하지만 의미를 두자면 양립이 가능하게 되는 것이 무모순이라 할 수 있다.
수학자들은 현재의 산술체계(자연수, 유리수, 실수, 허수, 유클리드기하학)의 무모순을
보여 완벽한 구조를 마련하려고 했다.
결국에 우리가 알고 있는 대부분의 산술체계에 대한 무모순성이 밝혀졌다.

근데 아이러니 하게도 이 무모순이란 공식을 대입하게 되면
반대로 우리의 산술체계에 반하는 구조가 생겨보리는 것이다.

조금 어려우니 다시 이야기 하자면
우리가 축구규칙에 대해서 완벽하다고 생각했을때.
다른 규칙과 반하지 않는 새로운 규칙을 넣으면 축구와 반하는 경기가 나오지만
모순이 없다면 잘못된 것이라 할 수 없다.

이처럼 무모순체계에 적당한 무모순 공리(규칙)을 넣어주면
새로운 수학이 열리기 때문이다.

대표적인 것이
기하학의 비유클리드 기하학이며
집합론의 일반연속체 가설, 선택공리
대수의 완비성공리 등이 있다.

무모순이란 것은 현재를 완벽하게 해주면서 동시에 불완전한 세계를 열어준다.


이전에 무한 집합에서 가장 큰 무한집합이란 존재하지 않는다고 이야기 하였습니다,
무한이 끝이 없음을 결론짓게 했던 일등공신

멱집합!



이 멱집합을 통해서 우리는
우리가 A란 집합을 가지고 P(A)란 더 큰집합을 만들었습니다.
A란 집합이 무한이라고 하더라도 성립합을 알았습니다.
(칸토어 정리 링크)

우리가 계속 무한에서 놀았으니 무한에서의 몇가지 의문을 계속 가져보겠습니다.

1. 무한중에 가장 작은 무한은?
2. 무한의 순서라는 것이 있을까?


자 그럼 1번부터 한번 이야기 해보겠습니다.

------------------------------------------------------------------------------

1. 무한중에 가장 작은 무한은?

가장 작은 무한


무한 중에서 어쩜 가장 상상하기 편한 수가 될 것입니다.


다들 예상하시는 대로, 자연수입니다.



  <무한 중 가장 작은 개수를 갖는 무한은 자연수이다>



수식 적용이 어려우므로 한글파일을 본떠 붙이겠습니다.



결론이 조금 쉽게 났습니다.
어떤 무한이든 무한인 것에서 하나씩 뽑아 원소를 나열할 수 있고

그건 자연스럽게 자연수와 대응되게 할 수 있습니다.
따라서 결론을 다시쓰면

가장 작은 무한은 자연수 개수 이다.


----------------------------------------------------------------------------------------

2. 그럼 자연수 개수 다음 무한은? 그리고 무한의 순서는?

결국 자연수가 가장 작은 무한이었습니다.
우리는 집합 4장에서 자연수보다 실수가 더 많음을 알 수가 있었고
5장에서는 멱집합을 이용하면 더 많은 개수의 집합을 만들 수 있음을 알 수 있었습니다.

 하지만 신기하게!
자연수의 멱집합은 실수와 같은 개수입니다.
(증명은 나중에 링크 걸어드리고^^ 좀 복잡해서)

여튼 그러다 보니 칸토어 정리를 생각하게 됩니다.
멱집합은 혹시 무한집합을 줄세우게 할 중요한 요소는 아닐까요?

1번 무한이 자연수라면
2번 무한이 실수 즉 자연수의 멱집합
그리고 3번 무한이 실수의 멱집합(즉 자연수의 멱집합의 멱집합)
이렇게.. 이렇게 무한이 일렬로  세울 수 있을까요?

이 문제에 대해서
칸토어가 제시한 것은 다음과 같습니다.


-일반 연속체 가설-

<무한집합 X에 대해서 멱집합 P(X)사이에는 다른 무한 개수는 존재하지 않는다>



즉 위에서 말한 것과 같이
X란 무한 다음 무한은 무조건 P(X)가 되어야 한다.라는 생각입니다.

아쉽게도 칸토어의 머리에서도
그리고 어떤 수학자의 머리에서도 이 문제가 풀리지 않게됩니다.

그리서 이 명제는 "가설"로 남게 되는데


수학에서 유명한 "일반 연속체 가설" 이라고 부릅니다.
힐베르트는 이것을 20C 수학문제의 1번에 당당히 올리게 됩니다.

하지만 이것은 애매한 상황이 되어버립니다.
괴델은 이 문제가 집합론을 이루는 요소(공리)로는 반증이 되지 않는다고 이야기합니다.
또한 코헨이란 사람이 집합론을 이루는 요소로는 증명되지 않는다고 증명했다..

무슨 소리인가 다시 이야기 해보면
집합론의 논리를 가지고
위의 연속체가설을 증명할 수도 없고! 반박할 수도 없다는 것입니다.
(이것은 괴델의 불완전성의 원리(글링크 클릭)와 관련되어 있습니다. )

이 집합론이라는 모델에서는

'연속체 가설이 성립한다' 라고  해도 하나의 체계가 완성될 수 있으며

또 '없다고 가정'해도 새롭게 다른 완성된 체계가 만들어질수 있다는 것입니다.

간단히 말해 둘 모두 정답이라는 애매모호한 정리로 마무리 됩니다.




결론은!
가장 작은 무한은 자연수 개수이며
무한의 순서는 멱집합으로 할 수 도 있고! 그런 순서가 없게 할 수도 있다!



그럼 이런 아리송한 결론은 괴델아저씨의 불완전성의 원리에서 말하겠고
이제 무한에서 조금 벗어나서
집합론에서의 역설들 몇 개만 더 알아보겠습니다.





제논의 역설 제거를 위해 미리 보는 등비수열의 무한합이 필요합니다.
개념은 이곳을!  제논의 역설은 이곳을! 를 클릭하시기 바랍니다.

이해는 쉽지만 설명하기 어려운 등비수열의 개념이 필요하기에
제논의 역설이 왜 이렇게 오랫동안 사람의 마음을 가지고 장난을 쳤는지 알 것 같습니다.
각설하고! 이제 제논의 역설을 풀어낼 마지막 공식들을 정리하겠습니다.

1. 등비수열의 합(유한번)
첫번째 항이 a이고 일정하게 곱해지는 값(공비)를 r이라 하고
첫번째항부터 n번째항 까지 더한 것을 X라고 하면
딱, 하나의 조건 r=1을 제외하면
  X-rX를 해보면 다음과 같은 결과가 나옵니다.




조금은 복잡하지만 천천히 뺄셈만 잘 보면 고등학교 수준입니다.

다시 정리하자면
등비수열이란 것이 1번 부터 n번까지 더하면 저런 모양입니다.


예를 들어보자면

첫번째가 3이고 일정하게 곱해지는 값이 2일떄
100번째까지 다 더해보면

입니다
(계산은 집에서 천천히..2의 100제곱 구하기 어려우니 값을 보고 싶으시면 상용로그 이용을 추천합니다;;)



2. 워밍업 에서 n의 값이 커진다면


r>1이라면 제곱 몇번 해보면 알겠지만 자꾸 자꾸 커져 무한대 까지 갑니다.
r=-1이라면 제곱을 할때마다 의 값은 1과 -1의 반복입니다.
r<-1이라면 제곱을 할때마다 값은 양수와 음수를 반복하며 그 절댓값이 더 커집니다.


그런데 0<r<1일경우를 보자!!
의 값은 음수든 양수든 점점 작아지는 계속 나아 갈수록 0에 가까워집니다.

r=1인 경우는 당연히 1입니다.



3. 멀리 왔지만 이제 다시 다 다가온 등비수열의 무한 합

만약에 0<r<1가 아닌 경우에는
의 값이 일정하지 않거나(r=-1, r<-1) 너무 커져서 합(r=1, r>1)을 구할 수 가 없습니다.


그래서 의 값이 0이 되는 0<r<1 의 경우에서만 합의 값을 구할 수 있고
가 됩니다.(a는 첫번째 값!, r은 일정하게 곱해지는 값!)

이것은 제논의 역설-아르키메데스와 거북이의 달리기(클릭)에 적용하자면
처음 거리는 10m 그리고 항상 일정하게 곱해지는 값 1/10이 적용되어 계산됩니다.


'수학 이론 > 정리 그리고 성질' 카테고리의 다른 글

힐베르트 문제들  (0) 2010.07.03
칸토어(칸토르) 정리  (6) 2010.06.26

제논의 역설 중에 나왔던 무한합
상당히 개념이 어려웁기에 여기서 조금 수학적으로 다가서 보겠습니다.
(사실 다음에 기초개념이 많이 필요하나 간단히 접어두고 간단히(?) 보면)

1. 수열이란?
간단히 말해서 수을 하나씩 나열 하는 것을 의미합니다..
1, 2, 3, 4
이것도 수열이고
3,1,4,2,5,2
이것도 수열이다 어떤 규칙이 없더라고 수 배열을 수열이라 합니다.



2. 등비수열이란!?
아무렇게나 만들어진 수열은 조금 재미없기 때문에
그중에서 어떤 규칙성이 있는 수열을 뽑아 쓰곤 하는데
가장 많이 쓰이는 수열중 하나가 이 등비수열입니다.

말 그대로 해석 하면
(등=같은) (비=비율이) 수열이입니다.

다시말해서 어떤 값으로 시작해서 처음값에 일정하게 어떤 값을 곱해 나가는 으로

예를 들면
처음이 3이고 곱해지는 일정한 값을 2라 했을 때의 등비수열은


가 됩니다.

보통 첫항은 a로 쓰며
동일하게 곱해지는 값은 r로 씁니다.
그래서 다음과 같이 보통 포현된다.





3. 등비수열이 뭐가 중요하냐고요?
중요한 점은 여러군데 있습니다.
보통 수열을 쓰는 이유 중에 하나가 어떤 변수의 변화를 쉽게 파악하고
그 안에서 여러가지 의미를 찾으려 하는 것입니다.

그런데 우리의 대부분의 현상에는 이런 등비가 많이 있죠.
몇가지 예를 들자면
은행의 이자는 바로 이 등비수열이 모델이 됩니다.
또한 도자기등 문화재의 생산년도를 파악하는 탄소연대측정법도 이 등비수열입니다.

그런데 오늘 여기에 관심을 둘 것은 바로 이 등비수열이
무한개의 항을 더해도 수렴하는 경우가 생긴다는 것입니다.

(모든 등비수열이 수렴한다는 뜻은 아닙니다.)

뭐 다른 어떤 수열도 그런 경우가 있지만
쓰임이 많으면서도 무한히 더해도 유한한 값이 나오는 경우가 있다는 것은 큰 의미가 있습니다.

다음 클릭하면 글이 이어집니다.


 
유한은 편하고 어렵지않고
누구나 노력하면 이룰 수 있습니다.
하지만 무한은 그렇지 않아
선택된자 특히 생각하는 자만이 얻을 수 있는 영역이었습니다.
사실 그 선을 넘는 것을 두려워하였죠.

우리가 알고 있는 무한에 대한 어려움은 어렵지 않게 생각해낼 수 있는데
그중에 우리가 가장 널리 알려져 있는 것이
제논의 역설 중 아킬레스와 거북이 문제입니다.(클릭)
제논의 역설은 단지 시간의 반씩 나누어지는 무한합에서 걸리고 맙니다.
제논의 시절에서는 무한번의 합이라는 것은 생각치 못했습니다.
하지만 우리 즉 무한을 다뤄본 사람들은 어렵지 않게(사실은 수열을 배우고 나서) 해결할 수 있습니다.

  이제 조금 심도 있는 질문을 하나 하고자 합니다.

이전에 짝수, 자연수, 유리수, 실수라는 무한개의 개수를 비교하면서 아리송한 결론을 얻었습니다.
짝수 - 자연수 - 유리수는 실제로 같은 개수(더 유식한 말로는 기수)였지만
 실수는 자연수 개수 보다 많았습니다.

이제 이런의문을 갖게 됩니다.

혹시 실수보다 더 많은 무한은 있을 까?
또 무한이라는 개수의 끝이 있을 까?

그러면 다음 과정을 거쳐야 한다.
1. 실수보다 더 큰 집합은 어떤 것이 있을 까?
2. 그럼 그 무한 개수를 갖는 집합은 실수 개수보다 많을까?

1. 실수보다 더 큰 집합은 어떤 것이 있을 까?
이 질문에 답하기 전에 개념 하나만 더 도입해야합니다.
그것은 바로 멱집합(power set(자세한 이야기는 클릭)입니다.
조금 생소할지 모르나 집합의 부분집합개념만 알면 금방 이해되는 집합입니다.

예를 들면 A = {1,2,3}이란 집합의

A의 모든 부분집합을 구해보면
그럼 Φ(공집합), {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 이렇게 8개입니다.

이때,

부분집합을 다 모아 다시 집합으로 만들면 그것이 바로 A의 멱집합이라 하고 P(A)라 표현합니다.

재미있게도 A가 원소의 개수가 n개이면(유한개)
P(A)의 원소의 개수는 2의 n제곱이 됩니다.(그 이유는 여기를 클릭)
다시 말해 2를 n번 곱한것입니다.

(그래서 원소가 3개인 집합의 멱집합 원소개수-> 2*2*2=8)

이 멱집합을 이용하면 무한에서 개수가 더 많은지는 몰라도
원래 집합보다 큰 집합을 만들 수 있습니다.

따라서 실수를 R이라고 할때 P(R)는 실수보다 큰 집합이 됩니다.

또한 우리는 어떤 집합이 나와도 멱잡합을 통해서 더 큰 집합을 구 할 수 있다.

2. 그럼 P(R)은 실수 R보다 정말 개수가 많을 까?

이 과정은 상당히 복잡할 수 있음을 미리 공지하지만
천천히 따라오면 재미있는 증명의 과정입니다.
우선 2번을 좀 더 거창하게 쓰면 다음과 같은 명제를 만들수 있고
이것이 바로 그 유명한 칸토어의 정리 이며
사실 결론만 알고 지나가는 것이 정신 건강에 좋으나
확실한 증명을 원하시면 다른 글을(클릭) 참고하시면 됩니다.

<집합 A에 대해서 A의 개수보다 P(A)의 개수가 더 많다>

따라서 어떤 집합을 잡던간에 그것보다 더 개수가 많은 집합을 만들 수 있습니다.

즉 우리가 실수 R이 가장 개수가 많았다면
P(R)이 개수가 더 많고
P(P(R))이 더 많고
P(P(P(R)))이 더 많고.. 무한이 이렇게 확장 할 수 있단 것입니다.

이렇게 하다 보면 역시..
무한의 끝을 보려 했던 우리의 노력은 헛된 노력이 됩니다만
우리는 더 큰 무한을 만드는 법을 배웠다.

다소 힘이 빠지지만 무서운 결론은


  무한의 개수의 끝은 없다.


여기서 다른 질문 하나 던지고 마칩니다.


혹시 무한대도 어떤 순서가 있지 않을까?(연속체 가설)


우리가
자연수개수 다음에 실수
그다음에 멱집합 실수...
이런식으로 무한이란 것도 자연수 처럼1번 무한, 2번 무한, 3번 무한 이렇게 할 수 있지 않을 까?하는 질문을 시작으로
칸토어이후 많은 도전이 있었고 상금이 걸려있는 힐베르트 질문의 1번을 당당히 차지한 문제입니다.
이것은 다음에 논의하도록 하고무한의 끝이 없음을 다시한번 상기하면 여기까지 줄입니다.


+ Recent posts