이전에 자연수의 개수와 짝수의 개수가 같다는
다소 좀 이해하기 어렵지만 부정할 수 없는 결과를 내었습니다.
여기서 멈추지 말고 더 큰 수들의 개수를 비교할 필요가 있습니다.

그래서

(가설) 유리수는 자연수보다 개수가 많다.

라는 당연한 명제에 이제 도전하고자 합니다.(결론이 급하시면 맨 아래로)


먼저 자연수라는 것은 자연스럽게 생기는 즉, 우리가 어렵게 생각하지 않아도 나오는 기본적ㅗ인 수 입니다. 다만 정말로 그 확실한 정의는 다소 복잡합니다.
그러기에 자연수의 정의는 다른 글(링크 클릭)로 대신하겠습니다.


이제 유리수를 소개하겠습니다.

유리수
ⓐ. m.n이 정수이고
ⓑ. m이 0이 아니며
일 때
n/m으로 표현이 되는 모든 수이며,

중복 표현 표현을 막기 위해서
ⓒ. n과 m의 최대 공약수는 1이다 라는 조건은 덧 붙이기도 합니다.
 


당연히 m=1이라고 하면 자연수는 유리수 안에 포함됩니다.

기본적으로 정수로 표현되는 분수 모두를 말하며
소수로 표현했을때
소수부분이 유한 하던지 아니면 순환하는 소수가 나오는 수를 말합니다.

유리수에 대한 기본적인 성질 중 하나는

실수라는 집합에서 보면 유리수는 조밀하게 이루어져 있다.
서로 다른 유리수 두개를 잡으면 그 사이에 무한한 유리수가 있습니다.(증명 클릭)

----------------------------------------------

  이런 성질을 보면

유리수와 자연수.. 개수 비교의 승자는 결정이 난것 처럼 보입니다.
하지만 우리는 당연하지만

비교할 가치가 있기에 다음 규칙을 생각할 수 있습니다.

1. 일단은 적어도 유리수가 자연수 개수 보다 많거나 같다.

이것은 유리수가 자연수를 포함하니 당연합니다.

2.  <유리수를 최대한 자연수에 맞추기>
만약 유리수가 n/m이고 서로소로 표현 되었다고 할때
n이 양수이면 2의 제곱수에 n을 음수라면 3의 제곱수에 m을 적용하고
m이 양수이면 5의 제곱수에 m을 음수라면 7의 제곱수에 m은 넣어 나오는 값들을 다 곱합니다.


그러니까 예를 들어

2/3은 22 X  53 = 4 X 125 = 500

-2/3은 32 X  53 = 9 X 125 = 1125


이렇게 유리수를 하나씩 바꾸어 자연수에 대응 시킵니다.

그런데 이때


2,3,5,7은 서로소 이이므로 거듭제곱을 해도

다른 유리수 값에 같은 결과가 나올 수 없습니다.


결과적으로는 모든 유리수는 서로 다른 자연수로 다 변해버립니다.


즉, 모든 유리수의 결과는 자연수의 일부분에 포함되어버린다는

다소 충격적인 결과가 나옵니다. 하지만 오류가 없으므로


유리수의 개수는 자연수의 개수보다 작거나 같다라는 결론이 나옵니다.



1 번의 결과와 2번의 결과가 모두 성립하려면


결국 자연수와 유리수의 개수는 같다...



그 많던 유리수조차 자연수의 개수와 같습니다.


이쯤되면 모든 무한개라는 것은 결국 자연수 개일까?라는 의구심이 듭니다.


그 해답은 다음 글에서 계속해보겠습니다.


+ Recent posts