1. 결합법직의 정의

* 가 집합 A에서의 연산일 때, 집합 A의 원소 x, y, z를 임의로 선택했을 때 다음이 성립하면 연산 *가 집합 A에서 결합법칙이 성립한다고 한다.

조건 : x*(y*z) = (x*y)*z

2. 결합법칙의 중요점

연산이란 것은 우리가 쉽게 사용하는 것이지만 사실 연산이란 것은 함수의 일부분이다.
특히 함수 중에서 하나의 쌍을 하나의 값으로 보내는 함수이다.
(예 '+'는 (2, 3)을 5로 보내는 함수이다.)

어떤 연산이든 한 쌍의 원소사이에서만 존재한다. 하지만 우리가 더하기를 보더라도
2+3+5를 바로 말할 수 있다. 혹은 2x3x5를 바로 말할 수 있다. 이런 이유가 무엇인가.
이렇게 쓸 수 있는 이유가 바로 결합법칙이 성립함이다.

더하기과 곱하기가 결합법칙이 성립하기 때문에 앞의 두개에 대해서 먼저 연산하든
아니면 뒤의 두개부터 연산하든 상관없이 같은 값을 낸다.

따라서 굳이 '괄호'로 연산을 한 쌍씩 나눌 필요없이 괄호를 생략하고 연산을 연이어 쓸 수 있다.
즉 연산은 해당 집합 위에서 자유를 얻는 것이다.

따라서 어떤 연산이 구조에서 자유롭기 위해서는 결합법칙이 상당히 중요하다.
결합법칙이 없다면 그 구조가 하나의 규칙을 만들어가기 어렵다.
하나의 작은 조건이지만 이 조건을 꼭 통해서야 완벽한 연산이 될 수 있기에
[결합법칙]에 쓰임보다 더 중요한 의미를 부여하고 싶다.


이전 글을 통해서 더하기와 곱하기를 통해서 자연수란 공간을 만들어보았습니다. 이는 자연수란 구조가 그저 자연스럽게 쓰인다라는 쓰임이나 목적에서 벗어나 하나의 당위성 혹은 하나의 구조적 기초를 말하는 것과 같습니다. 특히 자연수는 곱하기보다는 더하기로 생성된 공간입니다. 그러기에 자연수란 공간은 더하기라는 수학적 구조의 완성에 욕심이 많을 수 밖에 없습니다.

하지만 이에 앞서 그럼 수학적 구조가 완성된다는 것에 집중하고 싶습니다. 과연 어떻게 해야 수학적으로 하나의 연산이 구조적으로 완성될 수 있을 까요? 가장 기초는 preview에서 언급한 닫힘성입니다. 어떤 구조든 그 안에서 해결되지 않는 연산을 받아들일 수 없기 때문입니다. 그러기에 먼저 닫혀있어야 합니다. 그 다음을 이을 중요한 세가지가 있습니다. 카메라를 받혀주는 든든한 삼각대 처럼 말입니다.

좋은 구조는 튼튼한 삼각대 같습니다.




8. 큰 스승 - 항등원

두 가지 중에서 먼저 언급할 것은 '항등원'입니다. 고등학교에서 한번쯤 들어왔을 단어입니다만 조금 우화시켜보자면,  연산이라는 것을 아무리 시행해도 전혀 '쓸모 없는' 원소입니다. 사실 전혀 쓸모 없는 연산이지만 그것은 연산에서의 일이고 실재적으론 구조상 가장 중요한 구심점이며 주인공이라 할 수 있습니다. 그럼 그 쓸모 없다는 것을 하나의 식으로 표현하면 다음과 같습니다.

항등원이 만약 e라고 한다하면
a ○ e = a
          = e ○ a 입니다. 조건에 대해서 더 자세하게는 아래에 적겠습니다만 중요하진 않습니다.



정확하게 말하자면 어떠한 원소를 상대(연산)하더라도 그 자신의 값을 돌려주는 것이죠. 그래서 항등원을 비유하자면 균형의 추 같은 역활입니다. 한 평생 조용히 한자리를 지키는 수도승과 같은 이미지 처럼 흔들림이 없는 값입니다. 그러기에 만약 한 구조와 연산에 항등원이 없다면 마치 모두를 지지해줄 큰 스승한명이 없는 것과 같습니다.

사실 항등원이 같은 특이점은 강조하기 부끄러울만큼이나 가득 있습니다. 그러기에 사실 연산에 대한 어떤 구조든 닫힘성만 보장된다는 전제하에서 가장 먼저 찾는 요소중에 하나가 바로 이 항등원입니다. 적어도 항등원이 있다면 출발점은 확보한 셈이니까요.


9. 되돌리는 힘 - 역원

항등원의 추상적인 역활에 비해 역원의 역활은 비교적 정확합니다.  '역원'이란 큰 스승 항등원으로 되돌려주는 것들 입니다. 역원은 각자에 따라 그 크기가 다릅니다. 만약 내가 어떤 곳을 100m 떨어져 나왔다면 그에 대한 역원이란 내가 태어난 그곳으로 다시 돌아가는 그 거리만큼이 됩니다. 항등원의 상대가 모든 원소인데 반해 역원은 개별적으로 다를 수 밖에 없습니다.

간단한 식으로 적자면 우선 항등원을 e라고 했을 때, 이때 a의 역원이 되려면 다음을 만족는 x입니다
a ○ x = e
          = x ○ e 더 엄격한 설명을 접어 놓겠습니다.



온 만큼 다시 돌아가는 것을 역원에 비유할 수 있습니다.



개별적이고 변동적이긴 하지만 이 역원을 통해서 하나의 원소가 항등원으로 돌아갈 수 있음으로 구조적으로 많은  이점을 얻을 수 있습니다. 특히 어떤 미지의 것에 대한 물음, 특히 수학적으로 이야기하자면 방정식에서의 해답(근)을 찾는 데에 있어서 역원의 활동은 독보적입니다.

이는 많은 생각을 하지 않아도 될 정도입니다. 간단히 예들 들면 제가 동전 5개를 계산하면 내었더니 주머니에 3개가 남았다고 생각하면 우리는 어렵지 않게 5개를 내어준 것의 역을 생각하며 결국 처음에는 8개의 동전이 주머니에 있었다고 생각할 수 있습니다. 어쩜 항등원 보다 역원이 더 중하다고 생각할 수 있습니다.

하지만 역원이 존재하기 위해서의 가장 1번 조건은 항등원의 존재입니다.


10. 구조를 위한 마지막 기둥, '결합성'

닫힘성 위의 두개의 조건만으로도 우리는 아무 멋진 구조를 갖을 수 있다 생각이 들 수 있습니다. 하지만 어떤 곳이든지 존재감은 없지만 없으면 완전 불편한 어떤 것이 있기 마련입니다. 완성된 구조란 것도 마찬가지 입니다. 어쩜 우리가 당연시 사용하는 조건일지도 모르나 잊지말아야 할 것이 하나 있습니다. 바로 결합성이라는 것입니다.

결합성이란 것을 간단히 예를 들어 이야기 하자면 다음과 같습니다. (3+5)+7=3+(5+7) 처럼 덧셈이 있는 상황에서 결합의 순서를 달리한다고 해도 결과에는 영향이 없을 이야기 합니다. 이렇게 된다면 우리는 간단히 3+5+7이라고 쓸수도 있지요.

더 자세한 정의는 접어 놓겠습니다.

결합성의 가장 큰 힘은 다 같이 연산 할 수 있음 입니다.



사실 이 것을 보면 '이게 뭐?'란 반응이 나올 수 있습니다. 사실 마음속으로 생각해보면 당연하게 느껴지기도 합니다만 하나 중요한 사실을 기초로한다면 이야기는 달라집니다.

연산이란 본래 함수입니다. 그것도 두개씩 짝지었을 때 하나의 값이 나오는 함수이지요. 간단히 이야기 하면 +이란 연산은 (1,2)란 것을 3으로 대응시키는 것이지요. 그러기에 사실 1+2+3이라는 것은 3개를 한번에 함수로 보내는 것이므로 사실 쓸 수 없습니다. 하지만 위의 구조, 즉 결합성이란 조건이 있다면 이야기는 달라질 수 있습니다. 앞의 두개를 미리계산하거나 뒤의 두개를 미리 계산해도 어짜피 하나의 값이 나오기 때문에 괄호를 생략할 수 있는 것이지요.

어쩜 큰 행동을 하지 않는 조건이지만, 구조속의 연산에게는 자유로움을 선사하는 고마운 존재입니다.



11. 다시 돌아와서 자연수란.

그렇게 세가지의 조건을 만족하게 된다면 수학적으로 큰 의미를 갖는 구조가 됩니다. 단적인 예로 다음이 성립해야지만 '2+x=5'같은 계산도 할 수 있습니다. 그래서 이렇게 중요한 구조는 수학에서는 '군(group)'이라 합니다. 그럼 이제 원론적인 수학 이야기에서 벗어날 때가 되었습니다.

이 아름다운 구조를 완성시키기 위해 자연수로 돌아와 그 자신을 만들어준 창조적인 연산 더하기와 함께 생각해봅시다. 과연 자연수가 이런 구조들을 만족하는 좋은 구조를 갖는 공간인지 시험해보는 것입니다. 이는 우리가 잘 쓰고 있는 수에대해서 평가를 내리는 일이지요.

좋은 구조는 더 다양하고 아름다운 결과를 도출 시킵니다.



먼저 자연수는 결합성의 조건을 간단히 만족한다는 것을 알 수 있습니다. 위에서 언급했던 (3+5)+7과 3+(5+7)을 각각 계산하게 되면 성립함을 알 수 있죠. 사실 엄격하게 증명을 하는 것보다 머리속의 직관으로 생각하시는 것이 건강에 더 좋음을 말씀드립니다

다음으로 더하기에서 항등원과 역원을 생각해보겠습니다. 간단히 머리속에서 1+e=1을 그려본다면 성립하는 e는 바로 0이라고 쉽게 계산됩니다만 한가지 문제가 있네요. 바로 자연수에서는 0이 없다는 것입니다. 사실 이는 절망적입니다. 자연수를 만들게 해준 '연산 더하기'는 그 연산의 가장 기본적인 항등원을 내려주지 않았습니다. 역원은 항등원, 즉 돌아갈 원점이 없기 때문에 말할 필요도 없습니다.



생각해보면 자연수는 가장 보편적으로 쓰이는 수의 구조이긴 하나 구조라고 쓰기에도 민망할 정도록 가장 기본적인 더하기에서조차 구조를 만족하지 못하고 있습니다. 이는 자연수만으로 절대 만족하면 않되는 이유이기도 합니다. 따라서 자연수란 곳에 적당한 수를 추가할 필요가 있습니다.

자연수 가장 보편적이지만 더 만족스러운 구조를 위해서 다음이 필요할 것 같습니다.


+ Recent posts