<~이전글  / 다음글~>

   바로 이전 글에서 수학적 대수 구조를 완성하기 위해서는 기본적으로 닫힘성 위에 결합성과 항등원 그리고 역원의 존재성에서 찾았습니다. 이렇게 하나의 구조를 우리는 군(group)이라 합니다. 이 군에서는 수학적으로 상당히 강력한 성질들이 생겨납니다.

 


   이런 면에서 먼저 살펴보았던 자연수는 상당히 온전하지 않은 대수적 구조임을 알 수 있습니다. 자연수는 더하기에서 조차 항등원과 역원을 포함하지 않는 불완전한 구조이기 때문입니다. 그렇기에 몇 가지 체계를 더하는 작업이 필요합니다. 하지만 다행이도 우리가 경험상 충분히 자연수가 결합적인 성질을 만족함을 알고 있습니다. 그러기에 적어도 한 가지 구조는 만족합니다. 따라서 지금 부터 2가지만 완성하면 더하기에 대해서 구조적 완성되겠습니다.

   

12. 더하기의 완성을 위한 확장 : 항등원 '0'

  먼저 1번부터 시작하는 자연수의 왼쪽에 슬며시 '0'을 붙여줍니다. 이렇게만 해도 우리는 '더하기에 대한 항등원'이라는 귀중한 구조를 얻을 수 있습니다. 즉 이제 아무리 더해도 문제없는 고유의 원소가 자연수에 들어오는 것입니다. 실재로 자연수에 '0'을 포함한 집합을 '확장된 자연수'라고 하기도 합니다. 실재로 '0'을 쓰던 고대문명이 상당히 존재했던 사실로 부터 우리는 자연수처럼 쓰기도 했음을 알 수 있습니다. 하지만 이렇게 대수적으로 '0'의 쓰임이 명확해진 것은 얼마 되지 않은 일입니다.

태풍의 눈처럼 구조의 중심은 항등원이 가장 기초적으로 존재해야 합니다.


  이전 글에서 항등원을 언급했습니다만, 다시 써보자면 어떤 자연수'N'을 가져온다 하더라도 N + 0 = 0 + N = N 이 된다. 이 성질에서 우리는 덧셈에서의 가장 중심 구심점을 얻게 되는 것입니다. 이는 가장 적은 확장을 통해서 가장 큰 효과를 본 것이죠. 

'0'은 기본적으로 꼭 구조적인 의미뿐만 아니라 상징적으로도 얻는 바가 많습니다. 이 '0'하나 만으로 많은 철학적 논쟁이 지나가기도 했습니다. 이에 대해서 말장난했었던 저번 글을 링크하겠습니다. ('0'에 대한 다른 글(링크)) 하지만 '0'하나만으로는 약간 부족합니다.

   

13. 더하기의 완성을 위한 확장 : 역원 '음수(음의 정수)'

  결론부터 이야기하자면 바로 역원입니다. 역원은 기본적인 의미는 '항등원으로 돌아가기' 입니다. 그러기에 원소마다 돌아가야 할 길이 다르게 됩니다. 예를 들자면 1은 방금 확장되었던 '0'으로 돌아기 위해서는 1만큼, 100은 100만큼 돌아가야 합니다. 하지만 그냥 1의 역원은 1 , 100의 역원으로 100으로 쓰게 된다면 표현상 엄청난 혼란이 오기 때문에 특수한 기호를 붙입니다. 바로 '-'인 음수[각주:1]입니다.

  즉 우리는 '-1'이란 것은 1이란 원소의 더하기에 대한 역원입니다. 하지만 우리에겐 익숙한 '-'는 역원의 개념보다는 빼기의 개념으로 익숙합니다. 역사적으로 보아도 '-'의 표현은 단순히 빼기를 위한 도구로 처음 도입되곤 하는데, 이 점으로 미루어보자면 굳이 어려운 역원의 이미지를 상기시키지 않더라도 자연스럽게 인간은 그와 상응하는 연산을 생각한 것 입니다. 하지만 구조적으로 보기 위해서는 '-'를 '빼기'라는 이미지 보다는 '더하기란 연산에서의 역원 표현'으로 생각하는 것이 더 수학적입니다.

  잘 이해가 되지 않을 때에는 이 ‘오십 보 백 보’란 속담을 생각을 하면 됩니다. 기본적인 의미야 ‘거기서 거기다.’라는 뜻이겠지만, 생각해 보면 ‘오십 보의 역원은 오십 보 백 보의 역원은 백 보가 된다.’란 역원으로 바라볼 수 있습니다. 다 말하자면 덤앤 더머더라도 덤과 더머는 다른 역원을 갖는 것이죠.

덤 앤 더머라도 서로 다른 역원을 갖습니다.


  이렇게 하다보면 자연수의 개수만큼 '-'가 붙은 "음수"가 생기게 되는 것입니다. 이런 음수의 발견을 통해서 우리가 계산에서 엄청난 이득을 구조상 획득하게 됩니다.


  

14. 정수에서 완성되는 '더하기' 

 자연수와 '0' 그리고 음수(음의 정수)에서 우리는 하나의 완벽함을 꿈꾸고 있습니다. 이 수체계를 정수라고 합니다. 이제 우리는 정수에서  x+3=5라는 방정식이 나왔을 때, 우리는 자신 있게 양변에 -3을 더함으로써 x=2임을 계산 할 수 있는 것입니다. 이런 계산 과정은 +3을 등호의 반대편으로 보낼 때 '-'를 추가하여 계산하는 방법을 유추 방법을 활용할 수 있습니다. 즉 중/고등학교 수에서 방정식의 가장 중이한 풀이 방법 '이항'이 더하기 안에서 가능하다는 것입니다.

  같은 의미로, 3+5 = 3+x라는 사실 역시 우리가 양변에 -3을 더하는 것으로 x=5임을 알 수 있습니다. 이런 유형의 과정들은 역원의 합이 항등원이 되고 항등원은 더하기에 전혀 영향을 주지 않아 사라지는 것을 이용한 것입니다. 뭐 간단한 계산이라고 생각되시죠? 하지만 그 간단한 계산 안에서는 정말 많은 구조가 완성되었기 때문에 가능한 것입니다. 이는 복잡한 배합 속에서 우리가 쉽게 20%의 산소를 마시는 것과 같습니다.


정수의 모형은 흡사 물의 원소 처럼 0을 중심으로 양수와 음수가 있습니다.


  그깟 더하기라고는 하지 말하면 지금까지의 의미가 무색해지겠지만, 자연수를 말할 수 있었던 근간은 태초부터 더하기뿐이었습니다. 과학으로 이야기 하자면 이 복잡하고 어려운 인간의 것이란 것도 DNA 나선형의 작은 구조 시작된 계산입니다. 이 시작이 수로 말하자면 더하기 입니다. 반대로 기독교의 비유로 하자면 아담 같은 존재이죠.

  이 작은 구조의 확장이- 믿기 어려우시겠지만 원소의 수도 변함없이(관련 내용 링크) - 구조적인 완성을 주게 됩니다. 이러한 완성이 아주 의미가 있음을 반증하는 것은 어렵지 않게 찾을 수 있습니다. 정수의 구조를 바탕으로 만든 '정수론'만 접하게 되더라도 그 작은 차이가 방대한 이론을 낳을 수 있음을 알 수 있습니다.

  그러기에 자연수와 정수의 차이가 작아 보이더라도 구조적으로 볼 때 극복할 수도 없을 만큼 큰 차이라고 할 수 있습니다.

 

15. 하지만 만족하기엔 아직은 이른 '곱하기'

  맨 처음 자연수를 이야기 할 당시 더하기를 언급한 후에 아주 잠깐 '곱하기'를 언급했었습니다. 물론 곱하기의 정의 자체는 더하기의 간결한 표현이란 것으로 이야기 되었죠. 역시 정수에서도 마찬가지 입니다. 연산 곱하기는 정수로 확장된 이곳에서도 기를 펴기에는 너무나도 미약합니다. 하지만 곱하기에 따른 많은 이야기들이 진행되기는 합니다.

  유클리드 호제법이라든지[각주:2] 약수와 배수의 문제는 곱하기가 단순히 계산을 위한 것이 아니라 하나의 구조로써 충분한 이야기를 담고 있음을 생각할 수 있습니다. 하지만 방정식의 문제로 돌아가자면 곱하기는 애물단지가 됩니다. 아주 간단한 방정식인 2x=1이란 것은 정수에서 풀 수 없는 숙제 일 뿐입니다. 물론 풀어내는 방정식도 있기 마련이지만 이런 간단한 계산조차 풀어내지 못하는 체계입니다.


곱하기는 다음


  이전에 말씀 드린 적이 있는 것 같습니다. 이런 구조적인 약점은 앞으로 더 나가갈 체계의 방향입니다. 자연수에서 가장 중요한 더하기를 위해서 우리가 정수를 만들었듯이 이제까지 ‘쭈구리’ 인생이었던 '곱하기'를 위해서 다시 그 영역을 확장시키는 것입니다.

  하지만 이 길이 그렇게 쉽기만 한 것은 아닙니다. 바로 정수를 위했던 작업을 재실시해야 하기 때문입니다. 그래서 그 과정을 다음글로 살며시 미루겠습니다.


<~이전글  / 다음글~>

  1. 엄격하게는 음의 정수입니다만 현재 자연수의 음수만을 이야기 하므로 음의 정수를 음수로 쓰겠습니다. [본문으로]
  2. 2개의 자연수의 최대공약수를 구하는 알고리즘 중 하나. 호제법이란 말은 두 수가 서로 상대방 수를 나누어 원하는 수를 얻는 알고리즘. [본문으로]

+ Recent posts