이전 글에서는 자연수에서 정수로의 확장이 단순히 음수와 0의 추가가 아니라  <하나의 집합, 하나의 연산>의 쌍을 의미있는 구조(군, group)으로 만들기 위해서 필연적으로 확장을 하게 된 것을 이야기 했습니다. 즉, '자연수'에서 가장 기초적인 연산인 '더하기'를 더 의미있게 활용하기 위해서 자연수에 음수와 0을 더해 '더하기'에서 완벽한 집합을 만들었는데 그 집합이 바로 '정수'입니다.

다시 말하면 정수는 '더하기'에서 완벽한 구조를 이룬 것입니다. 사실 여기에서도 충분한 만족을 얻을 수도 있습니다. 하지만 우리가 쓰는 사칙 연산에서 우리가 완성한 것은 '덧셈과 덧셈의 역 연산인 뺄셈' 정도 입니다. 따라서 우리는 곱셈과 나눗셈에 대해서 더 알아가고 확장할 필요가 있습니다.

즉 이제 부터 주인공은 '더하기'에서 '곱하기'로 넘어갈 시점인 것입니다.

 
16. 연산 '곱하기'란 무엇인가 - 곱하기(곱셈)

우리가 연산 곱하기에 대한 기억은 대부분 동일하게 느껴질 것 입니다. 어린 시절에 부모와 아이의 첫번째 벽이 되기도 하는 '구구단'입니다. 구구단을 달달 외우면서 곱셈을 하나의 문자표처럼 외우면서 머리속에 '삽입'하게 되고 심지어는 그 삽입에 대한 확인을 이용한 '놀이', 구구단 게임을 통해서 상대방을 무안하게 하거나 집단의 즐거움으로 이용하기도 합니다. 물론 구구단을 통한 곱셈의 '삽입'은 복잡한 계산으로 난무한 세상을 살아가는데 필수 조건이긴 합니다만 이미 암산의 대상이 되어버렸죠.

잘 생각해보면 우리 일상에서 느껴온 곱셈은 구구단을 넘기가 힘듭니다. 또한 곱하기는 그 정의를 도입할 때 단지 '더하기의 축약판'이라는 점으로 처음에 적용하였습니다. 다시 말씀드리자면 2 X 3에 대한 평가를 어떻게 정의합니까? 대부분의 사람은 2를 3번 더한다고 어렵지 않게 이야기 할 수 있습니다.




이처럼 곱셈은 쉽게 더하기를 반복계산으로 정의한다고 볼 수 있습니다. 하지만 이것만으로 곱셈이 그 자체로써 연산의 위상을 얻을 수 없습니다. 더 복잡하기만 할 뿐 그저 외우는 '삽입'대상으로 느껴질 뿐입니다. 하지만 이제는 곱셈이 하나의 유연한 연산으로의 도약을 꿈꿀 수 있습니다. 아니 그 도약이 수의 구조상 아주 중요합니다.

그러기에 이 정수라는 더하기에 대한 완성을 이룬 구조에 곱셈을 다시한번 상기시키고자 합니다. 먼저 곱하기에 대한 정의가 더하기의 반복계산이란 것에서 조금 벗어날 필요가 있습니다. 물론 덧셈의 경우에서 처럼 이 과정을 상당히 복잡한 과정이고 그 과정이 불필요합니만 정확한 정의를 페아노 공리측면으로 아래에 조금만 접어 놓겠습니다. (정신 건강상 보지 않으셔도 좋습니다.)





17.  연산 '곱하기'의 결합성

      
이 모든 정의에 간단히 넘어가더라도 무엇보다 중요한 사실 하나는 곱하기가 더하기를 이용한 정의를 갖지만 보조 연산으로 남는 것이 아니라 하나의 연산으로 개별적으로 정의된다는 것입니다. 이제는 더하기 뿐만 아니라 곱하기도 하나의 당당한 연산으로 서게 되는 것입니다.

하지만 몇가지 연산으로써 의미가 있는지에 대한 검증이 필요합니다. 그중에서 가장 먼저 시행해 볼 요인은 바로 곱하기가 결합법칙을 성립하는 것인지에 대한 것입니다. 결합법칙에 대해서 이 전에 짧게 그  중요성을 이야기 한 적이 있어 자세한 설명은 링크(링크)로 대신합니다.(결합법칙에 대한 링크 / 구조에 대한 링크)

하지만 간략히 설명하면 결합법칙이란 것은 임의의 정수 A, B, C를 고를 때 곱하기에 대해 AX(BXC)=(AXB)XC 가 성립되는 것입니다. 사실 이 성질이 성립함을 보이는 것은 페아노의 공리를 통하면 약간의 인내가 필요하지만 어렵지는 않게 증명할 수 있습니다. 또한 직관적으로도 금방 이 성질이 곱하기에서 문제 없음을 알 수 있죠.

결합이 가능하다는 것은 집합위에서 자유로운 연산이라는 것입니다.


이에 연산으로 곱하기는 당당히 이름을 올릴 수 있습니다만, 이것으로 확실한 독립을 보장할 수 없습니다. 사실 연산을 만드는 일은 상당히 쉽습니다. 규칙이란 것이 만들기만 하면 되는 것입니다. 하지만 곱하기가 가장 기본 연산인 +와 함께 중요한 하나의 연산으로 대우 받는 이유는 무엇일까요?


18. 곱하기를 중요하게 하는 요인 - 분배법칙 (배분법칙)

수많은 연산중에서 곱하기를 주목하는 이유는 무엇일 까요?  단지 그냥 더하기의 반복 계산을 쉽게 계산하기 위한 하나의 구조일 뿐일까요? 이 답을 하기 위해서는 또 하나의 구조를 단단히 하는 방법을 언급할 필요가 있습니다. 이전에 설명했던 군(group)과 마찬가지로 복잡한 구조적인 조건을 제시해야 합니다.

그 중하나가 바로 위에서 제시했던 결합법칙입니다. 그리고 곱하기를 특별하게 만들어주는 요인은 바로 '분배법칙(배분법칙)' 입니다. 아마 대부분 수학책에서 한번쯤은 배운 내용이고 또한 열심히 배운 분이라면 '이게 뭐 대단한 것이지?'란 생각을 하실 것입니다. 하지만 단지 수능에 나오지 않을 뿐이지 분배의 법칙또한 상당히 중요한 것입니다.

우선 분배법칙의 정의는 다음과 같습니다.

집합 A 위에서 연산 x가 연산 +에 대해서 분배법칙이 성립한다는것은
집합 A의 임의의 원소 a,b,c의 원소에 대해 다음이 성립하는 것이다.

ax(b+c) = (axb)+(axc)
(a+b)xc = (axc)+(bxc)

하지만 이 관계가 갖는 구조적인 중요성에 대한 언급은 글의 길이 관계상 다음글로 미루겠습니다. 하지만 곱하기에 대해서 결론부터 이야기 하자면 곱하기는 더하기와 아무 밀접한 관계(분배법칙)을 갖으면 그 스스로도 하나의 연산으로 온전히 설 수 있는 힘(결합법칙)이 있는 중요한 연산이란 것입니다. 이제 곱하기를 중심으로 수 체계가 재정립됩니다.

이제 진정한 곱하기의 역습이 되겠습니다.

이제 더하기과 곱하기는 동등한 입장에서 구조를 완성합니다.



+ Recent posts