이전에 무한 집합에서 가장 큰 무한집합이란 존재하지 않는다고 이야기 하였습니다,
무한이 끝이 없음을 결론짓게 했던 일등공신

멱집합!



이 멱집합을 통해서 우리는
우리가 A란 집합을 가지고 P(A)란 더 큰집합을 만들었습니다.
A란 집합이 무한이라고 하더라도 성립합을 알았습니다.
(칸토어 정리 링크)

우리가 계속 무한에서 놀았으니 무한에서의 몇가지 의문을 계속 가져보겠습니다.

1. 무한중에 가장 작은 무한은?
2. 무한의 순서라는 것이 있을까?


자 그럼 1번부터 한번 이야기 해보겠습니다.

------------------------------------------------------------------------------

1. 무한중에 가장 작은 무한은?

가장 작은 무한


무한 중에서 어쩜 가장 상상하기 편한 수가 될 것입니다.


다들 예상하시는 대로, 자연수입니다.



  <무한 중 가장 작은 개수를 갖는 무한은 자연수이다>



수식 적용이 어려우므로 한글파일을 본떠 붙이겠습니다.



결론이 조금 쉽게 났습니다.
어떤 무한이든 무한인 것에서 하나씩 뽑아 원소를 나열할 수 있고

그건 자연스럽게 자연수와 대응되게 할 수 있습니다.
따라서 결론을 다시쓰면

가장 작은 무한은 자연수 개수 이다.


----------------------------------------------------------------------------------------

2. 그럼 자연수 개수 다음 무한은? 그리고 무한의 순서는?

결국 자연수가 가장 작은 무한이었습니다.
우리는 집합 4장에서 자연수보다 실수가 더 많음을 알 수가 있었고
5장에서는 멱집합을 이용하면 더 많은 개수의 집합을 만들 수 있음을 알 수 있었습니다.

 하지만 신기하게!
자연수의 멱집합은 실수와 같은 개수입니다.
(증명은 나중에 링크 걸어드리고^^ 좀 복잡해서)

여튼 그러다 보니 칸토어 정리를 생각하게 됩니다.
멱집합은 혹시 무한집합을 줄세우게 할 중요한 요소는 아닐까요?

1번 무한이 자연수라면
2번 무한이 실수 즉 자연수의 멱집합
그리고 3번 무한이 실수의 멱집합(즉 자연수의 멱집합의 멱집합)
이렇게.. 이렇게 무한이 일렬로  세울 수 있을까요?

이 문제에 대해서
칸토어가 제시한 것은 다음과 같습니다.


-일반 연속체 가설-

<무한집합 X에 대해서 멱집합 P(X)사이에는 다른 무한 개수는 존재하지 않는다>



즉 위에서 말한 것과 같이
X란 무한 다음 무한은 무조건 P(X)가 되어야 한다.라는 생각입니다.

아쉽게도 칸토어의 머리에서도
그리고 어떤 수학자의 머리에서도 이 문제가 풀리지 않게됩니다.

그리서 이 명제는 "가설"로 남게 되는데


수학에서 유명한 "일반 연속체 가설" 이라고 부릅니다.
힐베르트는 이것을 20C 수학문제의 1번에 당당히 올리게 됩니다.

하지만 이것은 애매한 상황이 되어버립니다.
괴델은 이 문제가 집합론을 이루는 요소(공리)로는 반증이 되지 않는다고 이야기합니다.
또한 코헨이란 사람이 집합론을 이루는 요소로는 증명되지 않는다고 증명했다..

무슨 소리인가 다시 이야기 해보면
집합론의 논리를 가지고
위의 연속체가설을 증명할 수도 없고! 반박할 수도 없다는 것입니다.
(이것은 괴델의 불완전성의 원리(글링크 클릭)와 관련되어 있습니다. )

이 집합론이라는 모델에서는

'연속체 가설이 성립한다' 라고  해도 하나의 체계가 완성될 수 있으며

또 '없다고 가정'해도 새롭게 다른 완성된 체계가 만들어질수 있다는 것입니다.

간단히 말해 둘 모두 정답이라는 애매모호한 정리로 마무리 됩니다.




결론은!
가장 작은 무한은 자연수 개수이며
무한의 순서는 멱집합으로 할 수 도 있고! 그런 순서가 없게 할 수도 있다!



그럼 이런 아리송한 결론은 괴델아저씨의 불완전성의 원리에서 말하겠고
이제 무한에서 조금 벗어나서
집합론에서의 역설들 몇 개만 더 알아보겠습니다.



+ Recent posts