이제 무한 이야기를 잠시 벗어나서 집합론의 문제들을 더 살펴보겠습니다.

칸토르(칸토어)가 집합론이라는 거대한 작업을 마칠때쯤(어짜피 그 시대에는 큰 인정은 없었지만)
러셀의 편지를 받게 됩니다.
어떤 연구이든 가장 절망스러운 것이 이룩할때 쯔음에 나오는 반론과 역설들입니다.

칸토어 역시 편지 한장에 절망감을 느끼게 됩니다.


그 내용은



  [모든 집합들의 집합]은 존재하는가?



사람들은 집합이란 단어를 '모임'으로 생각하기 때문에
"모든 집합들을 모아 놓은 집합"도 자연스레 상상하게 됩니다.
자연스러운 이 단어가  왜 문제가 되는 것일까요.


그 문제는

다음 이야기에서 나타납니다.


-------------------------이발사의 역리(러셀의 역리)------------------------


세빌리아(지명이름)의 이발사는 자신의 상점 입구에 이렇게 크게 써 놓았습니다.



 "나는 세빌리아 모든 사람들 중에서 스스로 면도하지 않는 사람들만을 면도해한다."


멋진 한마디입니다.

즉, 나는 스스로 면도하지 않는 사람을 면도하겠다는 설명입니다.


그런데 문제는 세빌리아의 다른 사람들이 아닌 자기 자신입니다.

이발사 스스로의  면도는 누가 해야 할까요?


먼저 자기 자신이 면도를 한다면 스스로 면도하는 사람이므로

팻말에 적혀있는 스스로 면도하지 않는 사람에 포함될 수 없습니다.

그러므로 이발사는 자신을 면도할 수 없습니다.




또한 다른 사람이 자신을 면도 한다면 이발사 자신은
팻말에 적혀있는 스스로 면도하지 않는 사람입니다.
따라서 스스로 면도를 해야 합니다.


----------------------------------------------------------------------------------------


말의 의도는
세릴리아의 스스로 면도하지 않는 사람을 면도 하는 사람
이란 자신의 처지가 자신에게 속하는가 속하지 않는가 입니다.
자신자체가 들어가야 할 곳이 어디인가라는 것입니다.

러셀은 이런 역리를 구체화한 집합과 질문을 던진다



"과연 자기자신을 <포함하지 않는 집합의 집합>이 가능한가?"

그럼 이 집합은 자신에게 속하는 것일까? 아니게 될까?


이 집합에는 자기 자신이 포함될수도 포함되지 않을 수도 없는 일이 벌어집니다.


전형적인 모순입니다.



"더 멀리나가면 <모든 집합의 집합>이 있을 수 있을까요?"



이발사의 역리로 시작한 이 질문은 집합론계의 아주 큰 파장을 불러일으켰습니다.
참고로 이와 같은 의미의 유명한 역설인 에우블리데스의 명제"내가 지금 말하는 명제는 거짓이다"
그리고 크레타섬의 거짓말쟁이의 역설"이섬의 사람들은 다 거짓말 쟁이다"와 일치합니다.

당시 집합론을 이야기 하는 수학자의 기본적인 믿음에 대못을 박은 이 논쟁은
결국에는 <모든 집합의 집합>이 존재하지 않음으로 결론을 냅니다.
그리고 이 논쟁을 통해서 소위 논리주의, 직관주의, 형식주의의 이 세가지의 사조가 나타나면서

급 혼란기를 맞이합니다.(자세한 것은 심화 메뉴를 통해서 알아보도록 하겠습니다.)



------------------------- 결  언 ------------------------------


우리가 어떤 것을 감각적으로 이해하고 의견을 수렴하는 일은
자신도 모르는 기초 사고에 지배당하게 됩니다.

집합론도 마찬가지입니다.
우리가 쉽게 이해할 수 있는 집합론이지만
웃으며 지나가기에는 많은 역설과 모순이 난무하게 됩니다.

<러셀의 역리>라는 홍역을 치룬 집합론은
제대로된 공리계를 세워 집합론을 방어해 나가야 할 필요성이 생겼고
대학수준의 이야기이지만
현제는 ZFC공리계라고 부르는
체르멜로-프란켈 집합론이라 하여 몇 가지 공리를 기반으로 한 집합론을 세웠습니다.

- 추가 적인 집합론의 역설 -
리차디언의 역설
부랄리-포르티 역설

---------------------------------------------------------------------------------

집합론이란 것으로 무한에 하나의 깃발을 세웠고
또한 집합론을 통해 많은 수학들이 피어나게 되었습니다.

많은 역리와 반발 속에서 꽃피우게된 집합론은
전공수학의 맨 처음을 장식하게되는 영광까지도 얻었죠.

불완전하고 감각적인 수학의 뿌리이지만(괴델의 불완전성의 원리)


집합론은 그 불완전속의 구조적이고 합리적인 사고로 부터 우리는 완벽함을 추구하고자 합니다.

불안함속의 완고한 한마디로 이 장을 마치겠습니다.



"아무것도 모든 것을 포함 하지 못한다."
- paul R. Halmos -


+ Recent posts